Area and Perimeter: Circle

Area and Perimeter: Circle

A circle is the set of points in a plane that lie a fixed distance from a given point in the plane.
Using a compass to draw a circle is a way of directly applying this definition. The "fixed distance" is the radius of the circle. A circle consists of only the curve itself. A circle together with its interior points is called a disc.

Circumference and Diameter of a Circle

The circumference of a circle is the distance around the circle-it's essentially the perimeter of the circle. The diameter is the distance across the circle through its center

The ratio of the circumference to the diameter is the same for every circle and is given by:

$$
\frac{C}{d}=\pi, \text { where } \pi \approx 3.14
$$

Another way to write this relationship is as the formula $C=\pi d$.
Thus, if you know the measurement for either the circumference or the diameter, you can determine the measurement of the other. For example, suppose you know that the diameter of a circle is 5 in . To find the circumference:

$$
\begin{aligned}
& C=\pi \cdot 5 \\
& C \approx 3.14 \cdot 5 \\
& C \approx 15.7
\end{aligned}
$$

The radius of a circle is a line that goes from the center of the circle to any point on its circumference. The radius is half the length of the diameter: $r=\frac{1}{2} d$ or $2 r=d$.

You can write the formula for circumference in terms of the radius as follows:

$$
C=2 \pi r
$$

Area of a Circle

Remember that you can find the area of a regular polygon by multiplying the apothem by half the perimeter. If you think of a circle as a regular polygon with many sides, you can come up with the correct formula for the area of a circle.

For a circle, the apothem is the radius, and the perimeter is the circumference. Thus, you can follow this series of steps to derive the formula for the area of a circle:

$$
A=a \frac{a}{2}-->A=r \frac{C}{2}-\rightarrow>A=r \frac{\pi d}{2}-->A=r \frac{\pi 2 r}{2}-\rightarrow>A=r \pi r=\pi r^{2}
$$

So the formula for the area of a circle is $A=\pi r^{2}$.
It is interesting to look at another way that you might derive this area formula from the formula for the circumference of a circle.

The argument is based on dividing a circle into many equal sectors. Shown here is a circle with 16 sectors:

Rearrange the sectors in a row, cut the leftmost sector in two, put half of it on the right end of the row, and then enclose the row in a rectangle of height h and length I. Although $h>r, h \approx r$. Similarly, although $I<\pi r, I \approx \pi r$. This last approximation comes from the number π as it appears in $C=2 \pi r$.

When the circle is divided into many sectors, a very good approximation to the area of the rectangle is $h l \approx r(\pi r)=\pi r^{2}$.
This argument gives an informal proof of the formula $A=\pi r^{2}$. Moreover, it shows that the constant π in the length formula $C=(2 \pi) \cdot r$ and the constant π in the area formula $A=\pi r^{2}$ are, in fact, the same number!

