Eureka Math" Homework Helper

2015-2016

Grade 3 Module 2 Lessons 1-17

Eureka Math, A Story of Units ${ }^{\circledR}$

Published by the non-profit Great Minds.
Copyright © 2015 Great Minds. No part of this work may be reproduced, distributed, modified, sold, or commercialized, in whole or in part, without consent of the copyright holder. Please see our User Agreement for more information. "Great Minds" and "Eureka Math" are registered trademarks of Great Minds.

G3-M2-Lesson 1

The table to the right shows how much time it takes each of the 5 students to run 100 meters.

Eric	19 seconds
Woo	20 seconds
Sharon	24 seconds
Steven	18 seconds
Joyce	22 seconds

Steven is the fastest runner.
I know Steven is the fastest runner because the chart shows me that he ran 100 meters in the least number of seconds, 18 seconds.
b. Who is the slowest runner?

Sharon is the slowest runner.

c. How many seconds faster did Eric run than Sharon?
$24-19=5$
Eric ran 5 seconds faster than Sharon.

I can subtract Eric's time from Sharon's time to find how much faster Eric ran than Sharon. I can use the compensation strategy to think of subtracting $24-19$ as $25-20$ to get 5. It is much easier for me to subtract $25-20$ than $24-19$.

G3-M2-Lesson 2

Follow the directions to label the number line below.
a. Susan practices piano between 3:00 p.m. and 4:00 p.m. Label the first and last tick marks as 3:00 p.m. and 4: 00 p.m.

3: 00 p.m. 4:00 p.m.

I can label this first tick mark as 3: 00 p.m. and the last tick mark as 4: 00 p.m. to show the hour interval Susan practices piano.
b. Each interval represents 5 minutes. Count by fives starting at 0, or 3:00 p.m. Label each 5-minute interval below the number line up to 4: 00 p.m.

3: 00 p.m.
4: 00 p.m.

I know there are 60 minutes between 3:00 p.m. and 4: 00 p.m. I can label 0 minutes below where I wrote 3: 00 p.m. and label 60 minutes

I can skip-count by fives to label each 5minute interval from left to right, starting with 0 and ending with 60.
c. Susan warms up her fingers by playing the scales until 3:10 p.m. Plot a point on the number line to represent this time. Above the point, write W.

G3-M2-Lesson 3

The clock shows what time Caleb starts playing outside on Monday afternoon.
a. What time does he start playing outside?

Caleb starts playing outside at 2:32 p.m.

I can find the minutes on this analog clock by counting by fives and ones,
beginning on the 12 , as zero minutes.
b. He plays outside for 19 minutes. What time does he finish playing?

Caleb finishes playing outside at 2: 51 p.m.

c. Draw hands on the clock to the right to show what time Caleb finishes playing.

I can check my answer from part (b) by counting by fives and ones on the clock, and then draw the hands on the clock. My minute hand is exactly at 51 minutes, but my hour hand is close to the 3 since it is almost $3: 00$.

d. Label the first and last tick marks with 2:00 p.m. and 3:00 p.m. Then, plot Caleb's start and finish times. Label his start time with a B and his finish time with an F.

G3-M2-Lesson 4

Use a number line to answer the problems below.

1. Celina cleans her room for 42 minutes. She starts at 9:04 a.m. What time does Celina finish cleaning her room?

I can draw a number line to help me figure out when Celina finishes cleaning her room. On the number line, I can label the first tick mark 0 and the last tick mark 60. Then I can label the hours and the 5-minute intervals.

Celina finishes cleaning her room at 9: 46 a.m.
I can plot 9: 04 a.m. on the number line. Then I can count 2 minutes to $9: 06$ and 40 minutes by fives until 9:46. 42 minutes after 9: 04 a.m. is 9: 46 a.m.
2. The school orchestra puts on a concert for the school. The concert lasts 35 minutes. It ends at 1:58 p.m. What time did the concert start?

The concert started at 1: 23 p.m.

I can plot 1: 58 p.m. on the number line. Then I can count backwards from $1: 58$ by ones to $1: 55$, by fives to $1: 25$, and by ones to $1: 23$. 1: 23 p.m. is 35 minutes before $1: 58$ p.m.

G3-M2-Lesson 5

Luke exercises. He stretches for 8 minutes, runs for 17 minutes, and walks for 10 minutes.
a. How many total minutes does he spend exercising?
\square

I can draw a tape diagram to show all the known information. I see all the parts are given, but the whole is unknown. So, I can label the whole with a question mark.
? minutes

I can estimate to draw the parts of my tape diagram to match the lengths of the minutes. 8 minutes is the shortest time, so I can draw it as the shortest unit. 17 minutes is the longest time, so I can draw it as the longest unit.
$8+17+10=35$
Luke spends a total of 35 minutes exercising.

I can write an addition equation to find the total number of minutes Luke spends exercising. I also need to remember to write a statement that answers the question.
b. Luke wants to watch a movie that starts at $1: 55 \mathrm{p} . \mathrm{m}$. It takes him 10 minutes to take a shower and 15 minutes to drive to the theater. If Luke starts exercising at $1: 00 \mathrm{p} . \mathrm{m}$., can he make it on time for the movie? Explain your reasoning.

I can draw a number line to show my reasoning. I can plot the starting time as $1: 35$ because I know it takes Luke 35 minutes to exercise from part (a). Then I can add 10 minutes for his shower and an additional 15 minutes for the drive to the theater.

No, Luke can't make it on time for the movie. From the number line, I can see that he will be five minutes late.

G3-M2-Lesson 6

1. Use the chart to help you answer the following questions:

1 kilogram	100 grams	10 grams	1 gram

a. Bethany puts a marker that weighs 10 grams on a pan balance. How many 1-gram weights does she need to balance the scale?
Bethany needs ten 1-gram weights to balance the scale.

b. Next, Bethany puts a 100-gram bag of beans on a pan balance. How many 10 -gram weights does she need to balance the scale?
Bethany needs ten 10-gram weights to balance the scale.

I know that it takes ten 10 -gram weights to equal 100 grams.
c. Bethany then puts a book that weighs 1 kilogram on a pan balance. How many 100 -gram weights does she need to balance the scale?
Bethany needs ten 100-gram weights to balance the scale.

I know that it takes ten 100-gram weights to equal 1 kilogram, or 1,000 grams.
d. What pattern do you notice in parts (a)-(c)?

I notice that to make a weight in the chart it takes ten of the lighter weight to the right in the chart. For example, to make 100 grams, it takes ten 10 -gram weights, and to make 1 kilogram, or 1, $\mathbf{0 0 0}$ grams, it takes ten 100-gram weights. It's just like the place value chart!
2. Read each digital scale. Write each weight using the word kilogram or gram for each measurement.

153 grams

3 kilograms

G3-M2-Lesson 7

1. Match each object with its approximate weight.
2. Jessica weighs her dog on a digital scale. She writes 8, but she forgets to record the unit. Which unit of measurement is correct, grams or kilograms? How do you know?

The weight of Jessica's dog needs to be recorded as 8 kilograms. Kilograms is the correct unit because 8 grams is about the same weight as 8 paperclips. It wouldn't make sense for her dog to weigh about the same as 8 paperclips.
3. Read and write the weight below. Write the word kilogram or gram with the measurement.

146 grams

Lesson 7:

G3-M2-Lesson 8

The weights below show the weight of the apples in each bucket.

a. The apples in Bucket \qquad C are the heaviest.
b. The apples in Bucket \qquad B are the lightest.

Bucket C weighs 14 kg , and Bucket B weighs 7 kg . I know that $14-7=7$, so Bucket C weighs 7 kg more.
c. The apples in Bucket C are \qquad 7 kilograms heavier than the apples in Bucket B.
d. What is the total weight of the apples in all three buckets?

$9+7+14=30$
The total weight of the apples is 30 kilograms.

e. Rebecca and her 2 sisters equally share all of the apples in Bucket A. How many kilograms of apples do they each get?

$$
9 \div 3=3
$$

Each sister gets 3 kilograms of apples.

I know that I'm dividing 9 kilograms into 3 equal groups because 3 people are sharing the apples in Bucket A. When I know the total and the number of equal groups, I divide to find the size of each group!
f. Mason gives 3 kilograms of apples from Bucket B to his friend. He uses 2 kilograms of apples from Bucket B to make apple pies. How many kilograms of apples are left in Bucket B?

g. Angela picks another bucket of apples, Bucket D. The apples in Bucket C are 6 kilograms heavier than the apples in Bucket D. How many kilograms of apples are in Bucket D?

There are 8 kilograms of apples in Bucket D.
h. What is the total weight of the apples in Buckets C and D?

$14+8=22$
The total weight of the apples in Buckets C and D is 22 kilograms.

To find the total weight of the apples in Buckets C and D , I need to add. I know that $14+8=22$, so the total weight of the apples in Buckets C and D is 22 kilograms.

G3-M2-Lesson 9

1. Ben makes 4 batches of cookies for the bake sale. He uses 5 milliliters of vanilla for each batch. How many milliliters of vanilla does he use in all?

$4 \times 5=20$

Ben uses 20 milliliters of vanilla.

2. Mrs. Gillette pours 3 glasses of juice for her children. Each glass holds 321 milliliters of juice. How much juice does Mrs. Gillette pour in all?

$321+321+321=963$

Mrs. Gillette pours 963 milliliters of juice.

3. Gabby uses a 4-liter bucket to give her pony water. How many buckets of water will Gabby need in order to give her pony 28 liters of water?

$28 \div 4=7$
Gabby needs 7 buckets of water.

4. Elijah makes 12 liters of punch for his birthday party. He pours the punch equally into 4 bowls. How many liters of punch are in each bowl?

12 L

I can draw a tape diagram. I know the total is 12 liters and there are 4 bowls or units. I need to solve for the number of liters in each bowl.
$12 \div 4=3$

Elijah pours 3 liters of punch into each bowl.

I can divide to solve Problems 3 and 4, but the unknowns in each problem are different. In Problem 3, I solved for the number of groups/units. In Problem 4, I solved for the size of each group/unit.

G3-M2-Lesson 10

1. Estimate the amount of liquid in each container to the nearest liter.

4 liters

5 liters

3 liters
2. Manny is comparing the capacity of buckets that he uses to water his vegetable garden. Use the chart to answer the questions.
a. Label the number line to show the capacity of each bucket. Bucket 2 has been done for you.

Bucket 3

Bucket	Capacity in Liters
Bucket 1	17
Bucket 2	12
Bucket 3	23

Bucket 1

Bucket 2

b. Which bucket has the greatest capacity? Bucket 3 has the greatest capacity.
c. Which bucket has the smallest capacity?

Bucket 2 has the smallest capacity.

e. Use the number line to find how many more liters Bucket 3 holds than Bucket 2.

Bucket $\mathbf{3}$ holds 11 more liters than Bucket 2.

To solve this problem, I can count up on the number line from Bucket 2 to Bucket 3. I'll start at 12 liters because that is the capacity of Bucket 2 . I count up 8 tick marks to 20 liters, and then I count 3 more tick marks to 23 , which is the capacity of Bucket 3. I know that $8+3=11$, so Bucket 3 holds 11 more liters than Bucket 2.

Lesson 10:

G3-M2-Lesson 11

1. Together the weight of a banana and an apple is 291 grams. The banana weighs 136 grams. How much does the apple weigh?

291 grams

The apple weighs 155 grams.
2. Sandy uses a total of 21 liters of water to water her flowerbeds. She uses 3 liters of water for each flowerbed. How many flowerbeds does Sandy water?

$21 \div 3=7<$ I can divide to find the total number of units,

Sandy waters 7 flowerbeds.

Lesson 11:

G3-M2-Lesson 12

1. Complete the chart.

omplete the chart. I measured the width of a picture frame. It was 24 centimeters wide.			
Object	Measurement (in cm)	The object measures between (which two tens)...	Length rounded to the nearest 10 cm
Width of picture frame	24 cm	20 and_30_cm	20 cm

2. Measure the liquid in the beaker to the nearest 10 milliliters.

There are about $\quad \mathbf{5 0}$ _ milliliters of liquid in the beaker.

G3-M2-Lesson 13

1. Round to the nearest ten. Draw a number line to model your thinking.
a. $52 \approx$ \qquad 50

I can draw a vertical number line with endpoints of 50 and 60 and a halfway point of 55 . When I plot 52 on the vertical number line, I can see that it is less than halfway between 50 and 60 . So 52 rounded to the nearest ten is 50 .
b. $\quad 152 \approx$ \qquad

Look, my vertical number lines for parts (a) and (b) are almost the same! The only difference is that all the numbers in part (b) are 100 more than the numbers in part (a).
2. Amelia pours 63 mL of water into a beaker. Madison pours 56 mL of water into Amelia's beaker. Round the total amount of water in the beaker to the nearest 10 milliliters. Model your thinking using a number line.

$63 \mathrm{~mL}+56 \mathrm{~mL}=119 \mathrm{~mL}$

I can use a vertical number line to round 119 mL to the nearest 10 milliliters. I can see that 119 mL is more than halfway between 110 mL and 120 mL . So 119 mL rounded to the nearest 10 mL is 120 mL .

There are about 120 mL of water in the beaker.

G3-M2-Lesson 14

1. Round to the nearest hundred. Draw a number line to model your thinking.
a. $234 \approx$ \qquad 200

b. $1,234 \approx$ \qquad

I can draw a vertical number line with endpoints of 1,200 and 1,300 and a halfway point of 1,250 . When I plot 1,234 on the vertical number line, I can see that it is less than halfway between 1,200 and 1,300. So 1,234 rounded to the nearest hundred is 1,200 .

Look, my vertical number lines for parts (a) and (b) are almost the same! The only difference is that all the numbers in part (b) are 1,000 more than the numbers in part (a).
2. There are 1,365 students at Park Street School. Kate and Sam round the number of students to the nearest hundred. Kate says it is one thousand, four hundred. Sam says it is 14 hundreds. Who is correct? Explain your thinking.

Kate and Sam are both right. 1,365 rounded to the nearest hundred is $1,400.1,400$ in unit form is 14 hundreds.

G3-M2-Lesson 15

1. Find the sums below. Choose mental math or the algorithm.

b. $59 \mathrm{~kg}+76 \mathrm{~kg}$

59 kg

$$
\frac{+76 \mathrm{~kg}}{+135 \mathrm{~kg}}
$$

5 tens plus 7 tens plus 1 ten equals 13 tens. So, $59 \mathrm{~kg}+76 \mathrm{~kg}=135 \mathrm{~kg}$. ones as 1 ten and 5 ones. I can record this by writing the 1 so that it crosses the line under the tens in the tens place, and the 5 below the line in the ones column. This way I write 15, rather than 5 and 1 as separate numbers.
2. Mrs. Alvarez's plant grew 23 centimeters in one week. The next week it grew 6 centimeters more than the previous week. What is the total number of centimeters the plant grew in 2 weeks?

29 cm does not answer the question since this tells me how much the plant grew only in Week 2. I need to find the total number of centimeters the plant grew in 2 weeks.

$$
23 \mathrm{~cm}+6 \mathrm{~cm}=29 \mathrm{~cm}
$$

In order to find the total number of centimeters the plant grew in 2 weeks, I can add $23 \mathrm{~cm}+29 \mathrm{~cm}$. I can use mental math to solve this problem since 29 is close to 30 .

Now I can write a statement that answers the question. This helps me check my work to see if my answer is reasonable.

G3-M2-Lesson 16

1. Find the sums.

I can use the standard algorithm to solve this problem. I can line
b. $358 \mathrm{~kg}+167 \mathrm{~kg} \square$ the numbers up vertically and add.

$\begin{array}{r}385 \mathrm{~kg} \\ +167 \mathrm{~kg} \\ \hline 552 \mathrm{~kg}\end{array}$

2. Matthew reads for 58 more minutes in March than in April. He reads for 378 minutes in April. Use a tape diagram to find the total minutes Matthew reads in March and April.

Matthew read for 814 minutes in March and April.

Lesson 16:

G3-M2-Lesson 17

Lucy buys an apple that weighs 152 grams. She buys a banana that weighs 109 grams.
a. Estimate the total weight of the apple and banana by rounding.

200 grams +100 grams $=\mathbf{3 0 0}$ grams

I can add the rounded numbers to estimate the total weight of the apple and the banana. The total weight is about 300 grams.
b. Estimate the total weight of the apple and banana by rounding in a different way.

150 grams +110 grams $=\mathbf{2 6 0}$ grams

I can add the rounded numbers to estimate the total weight of the apple and the banana. The total weight is about 260 grams.
c. Calculate the actual total weight of the apple and the banana. Which method of rounding was more precise? Why?

152 grams	Rounding to the nearest ten grams was more precise because when I rounded to the nearest ten grams, the estimate was 260 grams, and the +109 grams actual answer is 261 grams. The estimate and the actual answer are only 1 gram apart! When I rounded to the nearest hundred grams, the estimate was 300 grams, which isn't that close to the actual answer.
I can use the standard algorithm to find the actual total weight of the apple and the banana.	

Lesson 17:

