Eureka Math"' Homework Helper

2015-2016

Grade 5 Module 2 Lessons 1-18

Eureka Math, A Story of Units ${ }^{\circledR}$

Published by the non-profit Great Minds.
Copyright © 2015 Great Minds. No part of this work may be reproduced, distributed, modified, sold, or commercialized, in whole or in part, without consent of the copyright holder. Please see our User Agreement for more information. "Great Minds" and "Eureka Math" are registered trademarks of Great Minds.

G5-M2-Lesson 1

1. Fill in the blanks using your knowledge of place value units and basic facts.
a. 34×20

Think: 34 ones $\times 2$ tens $=\underline{\mathbf{6 8} \text { tens }}$
$34 \times 20=\underline{\mathbf{6 8 0}}$

34 ones $\times 2$ tens $=(34 \times 1) \times(2 \times 10)$. First, I did the mental math: $34 \times 2=68$.
Then I thought about the units. Ones times tens is tens.
68 tens is the same as 680 ones or 680 .
b. 420×20

Think: 42 tens $\times 2$ tens $=\underline{\mathbf{8 4} \text { hundreds }}$

Another way to think about this is $42 \times 10 \times 2 \times$

First, I'll multiply 42 times 2 in my head because that's a basic fact: 84 . Next, I have to think about the units. Tens times tens is hundreds.
Therefore, my answer is 84 hundreds or 8,400 . 10.

I can use the associative property to switch the order of the factors: $42 \times 2 \times 10 \times 10$.
c. 400×500

4 hundreds $\times 5$ hundreds $=\underline{\mathbf{2 0}}$ ten thousands

I have to be careful because the basic fact, $4 \times 5=20$, ends in a zero.
$400 \times 500=\underline{\mathbf{2 0 0}, \mathbf{0 0 0}}$

$$
\begin{aligned}
& \text { Another way to think about this is } 4 \times 100 \times 5 \times 100 \\
&=4 \times 5 \times 100 \times 100 \\
&=20 \times 100 \times 100 \\
&=20 \times 10,000 \\
&=200,000
\end{aligned}
$$

2. Determine if these equations are true or false. Defend your answer using knowledge of place value and the commutative, associate, and/or distributive properties.
a. 9 tens $=3$ tens $\times 3$ tens

False. The basic fact is correct: $3 \times 3=9$.

Correct answers could be 9 tens $=3$ tens \times 3 ones, or 9 hundreds $=3$ tens $\times 3$ tens.

However, the units are not correct: 10×10 is 100 .
b. $93 \times 7 \times 100=930 \times 7 \times 10$

True. I can rewrite the problem. $93 \times 7 \times(10 \times 10)=(93 \times 10) \times 7 \times 10$

The associative property tells me that I can group the factors in any order without changing the product.
3. Find the products. Show your thinking.
60×5
$=(6 \times 10) \times 5$
$=(6 \times 5) \times 10$
$=30 \times 10$
$=300$

$$
\begin{aligned}
& 60 \times 50 \\
& =(6 \times 10) \times(5 \times 10) \\
& =(6 \times 5) \times(10 \times 10) \\
& =30 \times 100 \\
& =3,000
\end{aligned}
$$

I use the distributive property to decompose the factors.

$$
6,000 \times 5,000
$$

$$
=(6 \times 1,000) \times(5 \times 1,000)
$$

$=(6 \times 5) \times(1,000 \times 1,000)$
$=30 \times 1,000,000$
$=30,000,000$

Then, I use the associative property to regroup the factors.

I have to be careful because the basic fact, 6×5, has a zero in the product. I multiply the basic fact and then think about the units. 6 tens times 5 is 30 tens. 30 tens is the same as 300 . I could get the wrong answer if I just counted zeros.

I can think of this in unit form: 6 thousands times 5 thousands. $6 \times 5=30$. The units are thousands times thousands. I can picture a place value chart in my head to solve a thousand times a thousand. A thousand times a thousand is a million. The answer is 30 million, or $30,000,000$.

G5-M2-Lesson 2

1. Round the factors to estimate the products.

I round each factor to the largest unit. For example, 387 rounds to 400.

The largest unit in 51 is tens. So, I round 51 to the nearest 10 , which is 50 .
a. $387 \times 51 \approx$ \qquad \times \qquad $=\underline{20,000}$

Now that I have 2 rounded factors, I can use the distributive property to decompose the numbers. $400 \times 50=(4 \times 100) \times(5 \times 10)$

I can use the associative property to regroup the factors.
$(4 \times 5) \times(100 \times 10)=20 \times 1,000=20,000$
b. $6,286 \times 26 \approx \mathbf{6 , 0 0 0}$ $\times \quad 25$ $=\underline{150,000}$

I could have chosen to round 25 to 30 . However, multiplying by 25 is mental math for me. If I round 26 to 25 , I know my estimated product will be closer to the actual product than if I round 26 to 30 .
2. There are 6,015 seats available for each of the Radio City Rockettes Spring Spectacular dance shows. If there are a total of 68 shows, about how many tickets are available in all?

The problem says "about," so I know to estimate.

$$
\begin{aligned}
& 6,000 \times 70 \\
& =6 \text { thousands } \times 7 \text { tens }=42 \text { ten thousands }=420,000 \\
& =(6 \times 7) \times(1,000 \times 10)=42 \times 10,000=420,000 \\
& \text { About 420,000 tickets are available for the shows. }
\end{aligned}
$$

G5-M2-Lesson 3

1. Draw a model. Then write the numerical expression.
a. The sum of 5 and 4 , doubled

The directions don't ask me to solve, or
evaluate, so I don't have to find the answers.

"The sum of 5 and 4 " means 5 and 4 are being added.
b. 3 times the difference between 42.6 and 23.9

42.6-23.9

The word difference tells me the expression involves subtraction.
$(42.6-23.9) \times 3$
c. The sum of 4 twelves and 3 sixes

I can write the value of each unit inside the tape diagram.
$(4 \times 12)+(3 \times 6)$ or $12+12+12+12+6+6+6$
2. Compare the two expressions using $>,<$, or $=$.
a. $\begin{aligned} & (2 \times 3)+(5 \times 3) \\ & \begin{array}{l}\text { I can think of }(2 \times 3)+(5 \times 3) \text { in unit form. } \\ 2 \text { threes }+5 \text { threes }=7 \text { threes }=21 .\end{array}\end{aligned}$

b. $28 \times(3+50)$

$$
<(3+50) \times 82
$$

82 units of fifty-three is more than 28 units of fifty-three.

G5-M2-Lesson 4

1. Circle each expression that is not equivalent to the expression in bold.
14×31

14 thirty-ones

The commutative property says $14 \times 31=31 \times 14$, or 14 thirty-ones $=31$ fourteens.

This would be equivalent if it were $13+1$ instead.

I think of this as 10 thirty-ones minus 4 thirty-ones. This expression is equal to 6 thirty-ones not 14 thirty-ones.
2. Solve using mental math. Draw a tape diagram and fill in the blanks to show your thinking.
a. $19 \times 25=$ \qquad twenty-fives

b. $21 \times 32=$ \qquad thirty-twos

Think: 20 twenty-fives - 1 twenty-five

$$
\begin{aligned}
& =(\underline{20} \times 25)-(\underline{1} \times 25) \\
& =\frac{500}{}-\frac{25}{475}
\end{aligned}
$$

Think: $\underline{20}$ thirty-twos $+\ldots 1$ thirty-two

$$
\begin{aligned}
& =(\underline{20} \times 32)+(\underline{1} \times 32) \\
& =_640
\end{aligned}+.32=672 .
$$

3. The pet store has 99 fish tanks with 44 fish in each tank. How many fish does the pet store have? Use mental math to solve. Explain your thinking.

I need to find 99 forty-fours.
I know that 99 forty-fours is $\mathbf{1}$ unit of forty-four less than 100 forty-fours.
I multiplied 100×44, which is 4,400 .
I need to subtract one group of 44.
4,400-44. The pet store has 4, 356 fish.

G5-M2-Lesson 5

1. Draw an area model, and then solve using the standard algorithm. Use arrows to match the partial products from the area model to the partial products in the algorithm.
a. 33×21

b. 433×21

2. Elizabeth pays $\$ 123$ each month for her cell phone service. How much does she spend in a year?

Elizabeth spends $\$ 1,476$ in a year for cell phone service.

Lesson 5:

G5-M2-Lesson 6

1. Draw an area model. Then, solve using the standard algorithm. Use arrows to match the partial products from your area model to the partial products in the algorithm.
a. 39×45

b. 339×45

The area model shows the factors expanded. If I
wanted to, I could put the + between the units.

2. Desmond bought a car and paid monthly installments. Each installment was $\$ 452$ per month. After 36 months, Desmond still owes $\$ 1,567$. What was the total price of the car?

The total price of the car was $\$ 17,839$.

G5-M2-Lesson 7

1. Draw an area model. Then, solve using the standard algorithm. Use arrows to match the partial products from the area model to the partial products in the algorithm.

$$
431 \times 246=\underline{\mathbf{1 0 6}, 026}
$$

Lesson 7: Connect area models and the distributive property to partial products of the standard algorithm with renaming.
2. Solve by drawing the area model and using the standard algorithm.

$$
2,451 \times 107=\underline{\mathbf{2 6 2}, \mathbf{2 5 7}}
$$

3. Solve using the standard algorithm.
$7,302 \times 408=\underline{\mathbf{2}, \mathbf{9 7 9}, \mathbf{2 1 6}}$

$$
8 \text { ones } \times 3 \text { hundreds }=24 \text { hundreds }=
$$

$$
2 \text { thousands } 4 \text { hundreds. I'll record } 2
$$ in the thousands place and write 4 in the hundreds place.

4 hundreds $\times 3$ hundreds $=$ 12 ten thousands. I'll record 1 in the hundred thousands place and write 2 in the ten thousands place.

8 ones $\times 2$ ones $=16$ ones $=$ 1 ten 6 ones. I'll record 1 in the tens place and write 6 in the ones place.

4 hundreds +8 hundreds $=12$ hundreds $=$ 1 thousand 2 hundreds. I'll record 1 in the thousands place and write 2 in the hundreds place.

G5-M2-Lesson 8

1. Estimate the products first. Solve by using the standard algorithm. Use your estimate to check the reasonableness of the product.

2. When multiplying 809 times 528 , Isaac got a product of 42,715 . Without calculating, does his product seem reasonable? Explain your thinking.

Isaac's product of about 40 thousands is not reasonable. A correct estimate is 8 hundreds times 5 hundreds, which is 40 ten thousands. That's the same as 400, 000 not 40, 000.

G5-M2-Lesson 9

Solve.

1. Howard and Robin are both cabinet makers. Over the last year, Howard made 107 cabinets. Robin made 28 more cabinets than Howard. Each cabinet they make has exactly 102 nails in it. How many nails did they use altogether while making the cabinets?

Howard:

			1	0		
		\times	1	0	2	
		2	1	4		
	1		0	7	0	0
1		0 ,	9	1		

Robin: $107+28=135$

Together they used 24, 684 nails.

2. Mrs. Peterson made 32 car payments at $\$ 533$ each. She still owes $\$ 8,530$ on her car. How much did the car cost?

Mrs. Peterson's car cost \$25, 586.

G5-M2-Lesson 10

1. Estimate the product. Solve using an area model and the standard algorithm. Remember to express your products in standard form.

943 tenths, or 94.3 , is the actual product, which is close to my estimated product of 80 .

2. Estimate. Then, use the standard algorithm to solve. Express your products in standard form.

a. $7.1 \times 29 \approx 7 \times 30$

> 7 ones $\times 3$ tens $=21$ tens, or 210 . This is the estimated product.

71 (tenths)

2,059 tenths, or 205.9 , is the actual product, which is close to my estimated product of 210.

> I round 182.4 to the nearest hundreds, 2 hundreds, and 32 to the nearest tens, 3 tens.
b. $182.4 \times 32 \approx \underline{\mathbf{2 0 0}} \times \underline{\mathbf{3 0}}=\underline{\mathbf{6}, \mathbf{0 0 0}}$

58,368 tenths, or $5,836.8$, is the actual product, which is close to my estimated product of 6,000 .

G5-M2-Lesson 11

1. Estimate the product. Solve using the standard algorithm. Use the thought bubbles to show your thinking.

$1.24 \times 32 \approx \underline{1} \times \underline{30}=30$

If I multiply 1.24 times 100 , I get 124 . Now, I can multiply whole numbers, 124×32.

Since I multiplied the factor 1.24 times 100, then I have to divide the product by 100 . The answer is 39.68 .
2. Solve using the standard algorithm.

3. Use the whole number product and place value reasoning to place the decimal point in the second product. Explain how you know.

If $54 \times 736=39,744, \quad$ then $\quad 54 \times 7.36=\underline{397.44}$.
7.36 is 736 hundredths, so I can just divide 39,744 by 100.
$39,744 \div 100=397.44$

I can compare the factors in both number sentences. Since $736 \div 100=7.36$, then I can divide the product by 100 .

G5-M2-Lesson 12

1. Estimate. Then solve using the standard algorithm. You may draw an area model if it helps you.

I have to remember to write the product as a number of hundredths.

2. Estimate. Then solve using the standard algorithm.
a. $0.47 \times 32 \approx$ \qquad \times \qquad

I'll think of multiplying $0.47 \times 100=47$.
$=$ \qquad

I have to remember to write the product as a number of hundredths. $1,504 \div 100=15.04$.
b. $\quad 6.04 \times 307 \approx$ \qquad \times \qquad $=1,800$

307
$\times 3288$
メ
$+181200$
$1,854.28$

3. Tatiana walks to the park every afternoon. In the month of August, she walked 2.35 miles each day. How far did Tatiana walk during the month of August?

There are 31 days in August.

Tatiana walked 72.85 miles in August.

235
$\times \quad 31$
235
$x \quad 350$
+7050

G5-M2-Lesson 13

1. Solve.
a. Convert years to days.

$$
\begin{aligned}
5 \text { years } & =5 \times(\mathbf{1} \text { year }) \\
& =5 \times(365 \text { days }) \\
& =\mathbf{1}, \mathbf{8 2 5} \text { days }
\end{aligned}
$$

1 year is equal to 365 days. I can multiply 5 times 365 days to find 1,825 days in 5 years.
b. Convert pounds to ounces.

b. Convert pounds to ounces.

$$
\begin{aligned}
13.5 \mathrm{lb} . & =13.5 \times(1 \mathrm{lb} .) \\
& =13.5 \times(16 \mathrm{oz} .) \\
& =216 \mathrm{oz} .
\end{aligned}
$$

2. After solving, write a statement to express each conversion.
a. The height of a male ostrich is 7.3 meters. What is his height in centimeters?

His height is $\mathbf{7 3 0}$ centimeters.
b. The capacity of a container is 0.3 liter. Convert this to milliliters.

The capacity of the container is $\mathbf{3 0 0}$ milliliters.

G5-M2-Lesson 14

1. Solve.
a. Convert quarts to gallons.

$$
\begin{aligned}
28 \text { quarts } & =28 \times(1 \text { quart }) \\
& =28 \times\left(\frac{1}{4} \text { gallon }\right) \\
& =\frac{28}{4} \text { gallons } \\
& =7 \text { gallons }
\end{aligned}
$$

b. Convert grams to kilograms.

2. After solving, write a statement to express each conversion.
a. A jug of milk holds 16 cups. Convert 16 cups to pints.

$$
\begin{aligned}
16 \text { cups } & =16 \times(1 \text { cup }) \\
& =16 \times\left(\frac{1}{2} \text { pint }\right) \\
& =\frac{16}{2} \text { pints } \\
& =8 \text { pints }
\end{aligned}
$$

16 cups is equal to 8 pints.
b. The length of a table is 305 centimeters. What is its length in meters?

$$
\begin{aligned}
\mathbf{3 0 5} \mathbf{~ c m} & =\mathbf{3 0 5} \times(\mathbf{1} \mathbf{~ c m}) \\
& =\mathbf{3 0 5} \times(\mathbf{0 . 0 1} \mathbf{~ m})
\end{aligned} \quad\left\{\begin{array}{l}
1 \text { centimeter is equal to } 0.01 \text { meter. I multiply } 305 \\
\text { times } 0.01 \text { meter to get } 3.05 \text { meters. }
\end{array}\right.
$$

$$
=3.05 \mathrm{~m}
$$

The table's length is $\mathbf{3 . 0 5}$ meters.

G5-M2-Lesson 15

1. A bag of peanuts is 5 times as heavy as a bag of sunflower seeds. The bag of peanuts also weighs 920 grams more than the bag of sunflower seeds.
a. What is the total weight in grams for the bag of peanuts and the bag of sunflower seeds?

Since I know 4 units is equal to 920 grams, I'll divide 920 grams by 4 to find the value of 1 unit, which is equal to 230 grams.

6 units $=6 \times 230 \mathrm{~g}$

$$
=1,380 \mathrm{~g}
$$

The total weight for the bag of peanuts and the bag of sunflower seeds is $\mathbf{1 , 3 8 0}$ grams.

Lesson 15:
b. Express the total weight of the bag of peanuts and the bag of sunflower seeds in kilograms.

$$
\begin{aligned}
1,380 \mathrm{~g} & =1,380 \times(1 \mathrm{~g}) \\
& =1,380 \times(0.001 \mathrm{~kg}) \\
& =1.380 \mathrm{~kg}
\end{aligned}
$$

The total weight of the bag of peanuts and the bag of sunflower seeds is 1.38 kilograms.

$$
4 \text { meters } 50 \text { centimeters is equal to } 450 \text { centimeters. }
$$

2. Gabriel cut a 4 meter 50 centimeter string into 9 equal pieces. Michael cut a 508 centimeter string into 10 equal pieces. How much longer is one of Michael's strings than one of Gabriel's?

Michael: $\mathbf{5 0 8} \mathbf{~ c m ~} \div \mathbf{1 0}=\mathbf{5 0 . 8} \mathbf{~ c m}$ Each piece of Michael's string is 50.8 centimeters long.
$50.8 \mathrm{~cm}-50 \mathrm{~cm}=0.8 \mathrm{~cm}$ \qquad
One of Michael's strings is $\mathbf{0 . 8}$ centimeters longer than one of Gabriel's.

G5-M2-Lesson 16

1. Divide. Draw place value disks to show your thinking for (a).
a. $\mathbf{4 0 0} \div 10=\mathbf{4 0}$

b. $650,000 \div 100$
$=\mathbf{6 , 5 0 0} \div \mathbf{1} \quad \begin{aligned} & \text { I can divide both the dividend and the divisor by } 100 \text {, so I can } \\ & \text { rewrite the division sentence as } 6,500 \div 1 \text {. The answer is } 6,500 \text {. }\end{aligned}$
$=6,500$

Dividing by 40 is the same thing as dividing by 10 and then dividing by 4 .
2. Divide.
a. $240,000 \div 40$
$=240,000 \div 10 \div 4 \quad$ I can solve $240,000 \div 10=24,000$. Then I can find that
$=24,000 \div 4 \longrightarrow 24,000 \div 4=6,000$.
$=6,000$
In unit form, this is 24 thousands $\div 4=6$ thousands.
b. $240,000 \div 400$
$=240,000 \div 100 \div \mathbf{4}$
Dividing by 400 is the same thing as dividing by 100 and then
$=2,400 \div 4$
$=600$ dividing by 4 .

I can solve $240,000 \div 100=2,400$. Then I can solve $2,400 \div 4=600$.
c. $240,000 \div 4,000$
$=240,000 \div 1,000 \div 4$
$=\mathbf{2 4 0} \div \mathbf{4}$
$=\mathbf{6 0}$$\quad \begin{aligned} & \text { I can solve } 240,000 \div 1,000=240 \text {. Then I can } \\ & \text { solve } 240 \div 4=60 .\end{aligned}$

G5-M2-Lesson 17

1. Estimate the quotient for the following problems.

$\begin{array}{ll}\text { a. } & 612 \div 33 \\ & \approx 600 \div 30\end{array}$

I look at the divisor, 99 , and round to the nearest ten. $99 \approx 100$
c. $821 \div 99$

2. A baker spent $\$ 989$ buying 48 pounds of nuts. About how much does each pound of nuts cost?

To find the cost of 1 pound of nuts, I'll use division. $989 \div 48$

Each pound of nuts costs about \$20.

G5-M2-Lesson 18

1. Estimate the quotients for the following problems.

a. $3,782 \div 23$
$=\mathbf{4 , 0 0 0} \div \mathbf{2 0 0}$

b. $2,519 \div 43$
$\approx 2,400 \div 40$
$=60>$ I can use the simple fact, $24 \div 4=6$, to help me solve $2,400 \div 40=60$.

2. Meilin has saved $\$ 4,825$. If she is paid $\$ 68$ an hour, about how many hours did she work?

$$
\text { I'll use division to find the number of hours that Meilin worked to save } \$ 4,825 \text {. }
$$

Meilin worked about 70 hours.

