Rational Numbers: Add and Subtract

Previously you learned that on a horizontal number line, positive numbers lie to the right of o and negative numbers lie to the left of o. For example, the number line below shows five positive numbers marked to the right of o and five negative numbers marked to the left of o.

A number can be interpreted as a location on the number line or as an arrow from one point on the number line to another point. $\mathrm{So},-3$ is either the point -3 or an arrow of length 3 heading left. Note that the point -3 is fixed on the number line, but the arrow -3 can start at any point on the number line.

Adding Positive and Negative Numbers

You can use the number line to show the addition $a+b$, where a and b are any two numbers (positive, negative, or o), as follows:

- Start at a (which may be positive, negative, or o).
- From a, move a distance to the right if b is positive or to the left if b is negative.
- You will end up at $a+b$.

You are already familiar with using a number line to add two positive numbers.

example

Example: $5+8$
Start at 5 . Go a distance of 8 in the positive direction.
You end up at 13.
$5+8=13$

You can use the number line to add a positive number to a negative number.

example

Example: -5 + 8
Start at -5 . Go a distance of 8 in the positive direction.
You end up at 3 .
$-5+8=3$

You can use the number line to add a negative number to a positive number.

example

Example: 5 + (-8)
Start at 5 . Then, because -8 is negative, go a distance of 8 in the negative direction.
You end up at -3 .
$5+(-8)=-3$

You can use the number line to add a negative number to a negative number.

example

Example: -5 + (-8)
Start at -5 . Then, because -8 is negative, go a distance of 8 in the negative direction.
You end up at -13 .

$$
-5+(-8)=-13
$$

The Opposite of a Number (the Additive Inverse)

Recall that the negative sign - is used to indicate the opposite of any number. Thus, the opposite of 5 is -5 , and the opposite of -5 is written $-(-5)$, which is equal to 5 . Numbers that are opposites are the same distance from 0 on the number line, but they are on opposite sides of o.

When you combine numbers that are opposites, you get o:
$\boldsymbol{x}+(-\boldsymbol{x})=\mathbf{o}$
For example, if a helicopter flies straight up 100 ft and then flies straight down 100 ft (representing -100), it winds up at $\mathrm{oft}: 100+(-100)=0$.

The opposite of a number is also known as the additive inverse of the number. Specifically, the additive inverse of x is the number, written $-x$, which has the property that $x+(-x)=0$.

Numbers that are opposites have the following properties:

- The opposite of the opposite of a number is the number itself: $-(-x)=x$
- The sum of a number and its opposite is $\mathrm{o}:(x)+(-x)=0$
- Subtracting a number from o gives the opposite: $0-x=-x$

Subtracting Negative and Positive Numbers

Subtraction is simply adding the opposite, so $a-b$ means the same as $a+$ $(-b)$. You can use a number line to show $a-b$, or $a+(-b)$, as you did for addition.

example

Example: $5-8=5+(-8)$
Start at 5 . Then, because -8 is negative, go a distance of 8 in the negative
direction.
You end up at -3 .
$5-8=-3$

example

Example: $-5-8$ or $-5+(-8)$
Start at -5 . Then, because -8 is negative, go a distance of 8 in the negative direction.
You end up at -13 .
$-5-8=-13$

example

Example: $-5-(-8)=-5+8$
Start at -5 . Go a distance of 8 in the positive direction.
You end up at 3 .
$-5-(-8)=3$

example

Example: $5-(-8)=5+8$
Start at 5 . Go a distance of 8 in the positive direction.
You end up at 13 .
$5-(-8)=13$

Difference on a Number Line

Given any two numbers a and b, where $b>a$, the segment on the number line from a to b has a length equal to the difference $b-a$.

example

Example: $a=-1$ and $b=5$ or $5-(-1)$
The segment on the number line between -1 and 5 has a length equal to the difference
$5-(-1)$. So, $5-(-1)=6$, and the length between -1 and 5 is equal to 6 units.

-1
 6
 5

Using the Properties of Operations to Add and Subtract

You can use the properties of operations to help you add and subtract rational numbers.

The Commutative Property of Addition

$a+b=b+a$ is true for all numbers, a and b.
For example:
$-5+2=-3$
$2+(-5)=-3$
so, $-5+2=2+(-5)$
However, the commutative property does not apply to subtraction. In general, $a-b$ does not equal $b-a$. For example, $-5-2=-7$, but $2-(-5)=$ 7. These two equations are different, showing that the commutative property does not apply to the operation of subtraction.

The Associative Property of Addition

$(a+b)+c=a+(b+c)$ is true for all numbers a, b, and c. This property allows you to add a group of numbers in any order.

For example, consider these equations:

$$
5+(-3)+(-6) \text { and } 5+[-3+(-6)]
$$

You can add the first two numbers, and then add that sum to the third number:
$[5+(-3)]+(-6)=2+(-6)=-4$
Or, you can add the second and third numbers, and then add that sum to the first number:
$5+[-3+(-6)]=5+(-9)=-4$
In each case, the result is the same, illustrating the associative property of addition.

However, the associative property does not apply to subtraction. In general, $(a-b)-c \neq a-(b-c)$. For example, if you regroup the expression $[5-(-3)]$ $-(-6)$ to get $5-[-3-(-6)]$, you do not get the same results:
$[5-(-3)]-(-6)=8-(-6)=8+6=14$
$5-[-3-(-6)]=5-(-3+6)=5-3=2$
The two results are different, showing that the associative property does not apply to the operation of subtraction.

