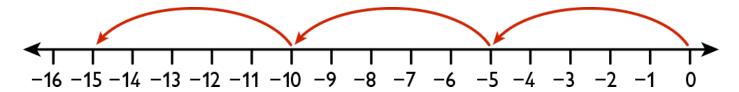
Rational Numbers: Multiply and Divide

Multiplying Positive and Negative Numbers

You know that when you multiply a positive number by a positive number, the result is positive. Multiplication with negative numbers yields different results.

Multiplying a Positive Number by a Negative Number


When multiplying a positive number by a negative number, the result is negative.

For example, imagine that a submarine submerges 5 m. Later, it submerges another 5 m. Still later, it submerges yet another 5 m. You could represent this situation with the following expression:

This expression can be thought of as 3 groups of negative 5:

$$3 \cdot (-5) = (-5) + (-5) + (-5) = -15$$

The result is a negative number. This number line illustrates this process.

Multiplying a Negative Number by a Positive Number

When multiplying a negative number by a positive number, the result is negative.

For example, think about the expression $(-5) \cdot 3$. Because multiplication is commutative, this expression is the same as $3 \cdot (-5)$. From the previous section, you know that the result is -15.

Multiplying a Negative Number by a Negative Number

When multiplying a negative number by a negative number, the result is positive.

For example, think about the expression $-3 \cdot (-5)$. This expression can be thought of as the opposite of $3 \cdot (-5)$. The latter expression equals a negative number, -15. Thus, $-3 \cdot (-5) = 15$ —a positive number.

Summary of Multiplication Rules

The previous information can be summarized in the following four simple rules:

- positive times positive equals positive
- positive times negative equals negative
- negative times positive equals negative
- negative times negative equals positive

Dividing Negative and Positive Numbers

You can divide with negative numbers, provided that the divisor is not zero. In general, if p and q are integers, then:

$$-(pq)=(-p)q=p(-q)$$

Using the Properties of Operations

The Inverse Property of Multiplication

Every nonzero number has a reciprocal. Multiplying a nonzero number by its reciprocal gives 1. The reciprocal of a number is called the *multiplicative inverse*. The concept of the multiplicative inverse is parallel to the concept of the additive inverse. The multiplicative inverse of a nonzero number is the number written 1 over p such that:

$$p \cdot 1p = 1p \cdot p = 1$$

For example, 34 and 43 are multiplicative inverses because $34 \times 43 = 43 \times 34 = 1$.

The Commutative Property of Multiplication

 $a \cdot b = b \cdot a$, where a and b can be any numbers, including negative numbers.

The Associative Property of Multiplication

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, where a, b, and c can be any numbers, including negative numbers. Applying the laws of signs for multiplying nonzero numbers:

- If just one of these three numbers is negative, then the product will be negative.
- If exactly two of these numbers are negative, then the product will be positive.
- If all three of these numbers are negative, then the product will be negative.

The Distributive Property

 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$, where a, b, and c can be any numbers, including negative numbers. For example:

$$-5 \cdot [2 + (-3)] = (-5 \cdot 2) + [-5 \cdot (-3)]$$

$$-5 \cdot (-1) = -10 + 15$$

More About Rational Numbers

A rational number is any number that can be written in the form ab, where a and b are integers, and where $b \neq 0$.

The expression o2 is one of the many ways of writing o.

The expression 50 has no meaning as a number, since it is impossible to divide by o.

As decimals, all rational numbers are either:

- Terminating decimals, such as 134 = 1.75.
- Repeating decimals, such as 311=0.272727...=0. 27

The bar over the 27 means it repeats forever.

Irrational numbers are neither terminating nor repeating decimals.

Converting a Rational Number to a Decimal

You can convert a rational number to a decimal using long division—simply divide the numerator by the denominator:

numeratordenominator or denominator)

For example, to convert to a decimal, write the 5 as 5.000 and perform the following long division:

Sometimes you end up with a repeating decimal.

For example, to convert to a decimal, perform the following long division:

So, = $0.428\overline{5}71$

The sequence 428571 repeats over and over.