MATH GRADE 7 UNIT 5 ALGEBRAIC REASONING

ANSWERS

FOR EXERCISES

ANSWERS

1. $C c+6=h$
2. $B C=2.54 i$

C $i=\frac{c}{2.54}$
3. $D F=\left(C \cdot \frac{9}{5}\right)+32$
4. A $s=4 c-7$
5. a. An algebraic expression for Marcus's height is $b+4$ or $4+b$.
b. Marcus is 65 in . tall.
$b+4=61+4=65$
6. a. An algebraic expression for Jack's height is $s-5$.
b. Sophie is 120 cm tall.
$115=s-5$
$120=s$
7. a. An equation for the rule of thumb is $b=\frac{w}{13}$ or an equivalent equation such as $b=w \div 13$ or $\frac{1}{13} w=b$.
b. The person weighs about 65 kg .

$$
\begin{aligned}
\frac{1}{13} w & =5 \\
w & =65
\end{aligned}
$$

Challenge Problem

8. a. An equation for the rule of thumb is $c=\frac{1}{2} g$.
b. You should buy $7 \frac{1}{2}$ oz of cheese.
$c=\frac{1}{2} g$
$c=\frac{1}{2}(15)$
$c=7 \frac{1}{2}$

LESSON 3: EXPRESSIONS IN GEOMETRY

ANSWERS

ANSWERS

1. A $x+x+6$

C $2(x+3)$
2. C $12 x$
3. (B) $12 n$
4. B $4 d$
5. The perimeter is $3 n+3 n+3 n$, or $9 n$. Since the triangle is equilateral, all three sides are the same length. Since one side is $3 n$, the other two sides must also be $3 n$. Thus, all three sides added together must be $9 n$.
6. a. Examples of a correct rectangle include 50 by 1,25 by 2 , or 10 by 5 , and a sketch of the rectangle should include the correct labels for the sides (i.e., $25 x$ and $2 x$).
b. An example of a correct expression for the perimeter of the rectangle with sides $25 x$ and $2 x$ is $2(25 x+2 x)$.
c. Use the sketch and the definition of a rectangle to provide a thorough explanation about how to find the correct expression for the rectangle.
7. a. $4+x+1+2+3+(x+2)$ or $2 x+12$
b. $4(x+2)-2$ or $3(x+2)$ or $4 x+6$

Challenge Problem

8. The width of the rectangle is 10 in .

$$
\begin{aligned}
10 x+20 & =2(5 x+w) \\
10 x+20 & =10 x+2 w \\
20 & =2 w \\
10 & =w
\end{aligned}
$$

ANSWERS

1. a. $7 x+14$ or $14+7 x$
b. $6 m+15$ or $15+6 m$
c. $2 n+30$ or $30+2 n$
2. B $6 d+27$
3. A $9 h+9$

B $9(h+1)$
(D) $3(3 h+3)$
4. $(4 \cdot 2)+2 x$ or $(4 \cdot 4)-2(4-x)$
$8+2 x$ or $2 x+8$
5. $\frac{(4 x+6)(3)}{2}$
$\frac{12 x+18}{2}$
$6 x+9$
6. Lucy made a mistake when distributing the first term—she added 3 and 7 instead of multiplying them to get 21 . She also didn't distribute the minus sign through the second term. The correct simplification process looks like:
$3(4 x+7)-(8 x+4)$
$12 x+21-8 x-4$
$4 x+17$
7. $5(3 x+1)=15 x+5$

Challenge Problem

8. Marcus is incorrect. Possible explanation: Marcus is correct that when $x=0$, the two expressions have the same value. But to be equivalent, the expressions must have the same value for every value of x. For any other value of x besides $x=0$, the expressions do not have the same value. For example, when $x=2$, the value of $4 x+3$ is 11 and the value of $2 x+3$ is 7 .

LESSON 5: SOLVE PERCENT PROBLEMS

ANSWERS

ANSWERS

1. $1.5 a$
2. B $0.8 x$
(D) $\frac{4}{5} x$
(E) $x-0.2 x$
3. a. 1.05 d
b. $0.75 r$
4. If you sell at the shop, you will get $0.40(60)=\$ 24$.

If you sell online, you will make $0.95(30)=\$ 28.50$.
To make the most money, you should sell the game online, since you will make $\$ 4.50$ more than if you sell the game at the shop.
5. a. Jack's method is a reasonable approximation for low cost items. It will be off by about $\$ 0.25$ in this case.
b. The cost of the T-shirt using his approximation is $\$ 14.50+\$ 1.45=\$ 15.95$.
c. But the actual total cost will be $1.0825 \cdot \$ 14.50=\$ 15.70$ (rounded to the nearest cent).
d. Jack's approximation gets worse as the cost goes up. For the $\$ 1,000$ TV, his estimate is $\$ 1,100$, but the real cost is $\$ 1,082.50$. Now he is off by more than $\$ 17$.
6. An expression that represents the entire cost is 1.25 s .
7. a. The total area is $12 \cdot 6=72$ sq units. The area of rectangle A is $8 \cdot 6=48 \mathrm{sq}$ units. So, rectangle A takes up $\frac{2}{3}$ of the total area, or about 66.67%.
b. $B+C$ makes up the remaining third of the total area. Since $a=48$ sq units, and $(B+C)=24$ sq units, you can express the remaining area as $0.5 a$.

Challenge Problem

8. Disagree. You can use the equation $0.75 x=75$ to find the original price. The original price was $\$ 100$.

ANSWERS

1. a. Multiplication property of equality
b. Addition property of equality
c. Multiplication property of equality
2. $4 x-6=30$
$4 x-6+6=30+6 \quad$ Addition property of equality
$4 x=36$
$\frac{4}{4} x=\frac{36}{4} \quad$ Multiplication property of equality
$x=9$
Check:
4(9) $-6=30$
$36-6=30$
$30=30$
3. $7-2 x=19$

7-7-2x=19-7 Addition property of equality
$-2 x=12$
$\frac{-2}{-2} x=\frac{12}{-2}$
Multiplication property of equality

$$
x=-6
$$

Check:
$7-2(-6)=19$
$7+12=19$
$19=19$
4. $\frac{1}{3} x+5=19$
$\frac{1}{3} x+5-5=19-5 \quad$ Addition property of equality
$\frac{1}{3} x=14$
$3\left(\frac{1}{3}\right) x=(3) 14 \quad$ Multiplication property of equality

$$
x=42
$$

Check:
$\frac{1}{3}(42)+5=19$
$14+5=19$
$19=19$
5. Amir is 4 years old.

Let $a=$ Amir's age.
$3 a+2=14$
$3 a=12$
$a=4$
6. He had 4 heart cards.

Let $h=$ the number of heart cards.
$3 h+13=25$
$3 h=12$
$h=4$
7. Each shoe rental cost $\$ 3.50$.

Let $s=$ the cost per shoe rental.
$4 s+6=20$
$4 s=14$
$s=3.5$

Challenge Problem

8. Possible steps:
$2(x-8)=-20$
$2 x-16=-20$
$2 x-16+16=-20+16$
$2 x=-4$
$x=-2$

ANSWERS

1. A $2 n+4=16$
2. C $n=11$
3. Possible steps:
$2 n+4=16$
$2 n+4-4=16-4$
$2 n=12$
$\frac{1}{2}(2 n)=\frac{1}{2}(12)$
$n=6$
Addition property of equality Add

Multiplication property of equality
Multiply
4. $2(n+4)=16$
$\frac{2(n+4)}{2}=\frac{16}{2}$
Multiplication property of equality
$n+4=8$
$n+4-4=8-4$
Multiply
$n=4$
Addition property of equality
Add
5. Lucy is 10 years old now.

Let $x=$ Lucy's current age.
$45=3(x+5)$
$x=10$
6. a. These equations represent each plan's cost based on m, the number of movies rented.
$N=6+1 m$
$R=3 m$
b. I would use the Netblix plan, because I watch a lot of movies. For $m<3$, Redblocks is the better choice, since the total cost is cheaper. At $m=3$, the plans are equal. And for $m>3$, Netblix is cheaper.

m	Netblix Cost (\$)	Redblocks Cost (\$)
0	6	0
1	7	3
2	8	6
3	9	9
4	10	12
5	11	15

7. Marcus needs to save for 26 weeks, about $6 \frac{1}{2}$ months.

Let $w=$ the number of weeks.
$140+10 w=400$
$10 w=260$
$w=26$

Challenge Problem
8. $x=-0.7$

$$
\begin{aligned}
-2\left(x-4 \frac{1}{2}\right) & =10.4 \\
-2 x+9 & =10.4 \\
-2 x & =1.4 \\
x & =-0.7
\end{aligned}
$$

ANSWERS

1. A a little less than $\$ 46$
2. D 11 bleacher seat tickets
3. A $3 g+2 y+c=19.57$
4. Each package of cheese costs $\$ 2.9$.

Let $c=$ the cost of each package of cheese.
$3(\$ 1.98)+4 c=\$ 17.90$
Estimate: $\$ 6+4 \mathrm{c}=\$ 18, \mathrm{c} \approx \$ 3$
$3(\$ 1.98)+4 c=\$ 17.90$
$\$ 5.94+4 c=\$ 17.90$
$4 c=\$ 11.96$
$c=\$ 2.99$
5. The children's tickets cost $\$ 4.50$ each.

Let $t=$ the cost of a child's ticket.
$3(\$ 8.75)+2 t=\$ 35.25$
Estimate: $\$ 27+2 t=\$ 35, t \approx \$ 4$

$$
\begin{aligned}
3(\$ 8.75)+2 t & =\$ 35.25 \\
\$ 26.25+2 t & =\$ 35.25 \\
2 t & =\$ 9.00 \\
t & =\$ 4.50
\end{aligned}
$$

6. Each game costs $\$ 30.49$.

Let $g=$ the cost of a game.
$\$ 231.46=\$ 139.99+3 g$
Estimate: $\$ 230=\$ 140+3 g, g \approx \$ 30$

$$
\begin{aligned}
\$ 231.46 & =\$ 139.99+3 g \\
\$ 91.47 & =3 g \\
\$ 30.49 & =g
\end{aligned}
$$

7. Jack gets paid $\$ 19$ altogether.

Let $d=$ the number of dogs
\$4 + \$3d
$\$ 4+\$ 3(5)$
$\$ 4+\$ 15$
\$19

Challenge Problem

8. Word problems will vary. Here is a possible answer:

Mrs. Martin pays $\$ 100$ for tickets to a local theater performance. She buys 6 children's tickets at $\$ 7.50$ each and 5 adult tickets. What is the price of an adult ticket?

$$
6(\$ 7.50)+5 x=\$ 100
$$

$\$ 45+5 x=\$ 100$
$5 x=\$ 55$
$x=\$ 11$
An adult ticket costs \$11.

ANSWERS

1. $x<3$
2. (D) $x>5$
3. A $x \geq-14$
4. $x<6$

5. $x \leq-8$

6. $x \leq 0$

7. $x \geq-12.5$

Challenge Problem
8. $x \geq 1 \frac{2}{3}$

ANSWERS

1. An inequality representing Jack's age is $x \geq 5$.
2. B $x+2 \geq 45$
3. C $10 g+30 e \geq 100$
4. A $b>30$
5. Marcus bought 1 or 2 pairs of socks.

$$
15+2.5 x<22.50
$$

$$
x<3
$$

6. Karen must work more than 4 hours of overtime.
$350+15 x>410$
$x>4$
7. Lucy needs more than 3 sales to earn more than Jack.

$$
320+50 x>470
$$

$$
x>3
$$

Challenge Problem

8. Karen is between her 16th and 17th birthdays.

ANSWERS

1. $x \geq 20$
2. C $x<11$
3. B $500,000 \leq p-0.08 p$
4. The aquariums cost more than $\$ 160$ each.
$500-3 a<20$
$a>160$
5. Marcus sold at least 51 bananas each day.
$450-2 b<350$
$b>50$
6. You can mail something weighing up to 10 oz .
$4.50+0.25 x<7$
$x<10$
7. This inequality shows when the total cost using Quickship will be less than using Fast Send.
$5.50+0.15 x<4.50+0.25 x$
$x>10$
$x>10$
Quickship is the less expensive choice for packages weighing more than 10 oz. Your decision depends on the weight of the package you want to send.

Challenge Problem

8. $6 x+6<-3(x+7)$
$6 x+6<-3 x-21$
$9 x<-27$
$x<-3$

ANSWERS

1. 6
2. a. $4 \frac{2}{3}$
b. none
c. 0
d. 4
3. a. $8.4 \overline{9}$
b. none
c. 0
d. 8
4. a. none
b. -4
c. -4
d. none
5. He cannot afford any T-shirts if he buys the jacket.
$50 \geq 35+20 t$
$15 \geq 20 t$
$\frac{3}{4} \geq t$
6. She can buy 3 USB drives. A fourth one would put her over budget.
$80 \geq 7+19.50 d$
$73 \geq 19.50 d$
$3.7435 \geq$ d
7. The tank had been leaking for more than 8 hours.
$14-0.5 t<10$
$-0.5 t<-4$
$t>8$

Challenge Problem

8. a. 1
b. none
c. 1
d. none
