Expressions: Integer Exponents Review of Exponential Form

Exponential form is a simple and useful way to express a number that is multiplied by itself many times. For example:
6^{10} means $(6 \cdot 6 \cdot 6)$.
6 is the repeated factor. It is also known as the base.
10 tells you that there are 10 repeated factors. 10 is the exponent.
Parentheses are essential when you express a negative number in exponential form. Consider the number -4^{6}. Without parentheses, you read this number as follows:
$-(4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4)=-4,096$
If you want to represent "-4 raised to the power of 6," you must use parentheses:
$(-4)^{6}=(-4)(-4)(-4)(-4)(-4)(-4)=+4,096$

Basic Definitions

For any positive integer n and $b \neq 0$, consider these definitions:

- Definition of $b^{n}: b^{n}=b \bullet b \bullet b \bullet \ldots \bullet b$ (The factor b occurs n times.)
- Definition of $b^{-n}: b^{-n}=1 \mathrm{bn}$

The first definition shows the basic meaning of exponential notation as repeated multiplication.

The second definition introduces a negative exponent to stand for a
reciprocal: $b^{-1}=1 \mathrm{~b}$.

Operations With Exponents

To multiply different powers of the same base, add the exponents:
$b^{n} \cdot b^{m}=b^{n+m}$ where n and m are any positive integers
To divide different powers of the same base, subtract the exponents:
$\operatorname{bnbm}=b^{n-m}$ where n and m are any positive integers and $b \neq 0$
To take a power of a power, multiply the exponents:
$\left(b^{n}\right)^{m}=b^{n \cdot m}$ where n and m are any positive integers

Negative Exponents

Exponents can be negative. The notation b^{-n} is defined as 1 bn and the notation b^{n} is defined as $1 \mathrm{~b}-\mathrm{n}$, where $b \neq 0$. This relationship is called the negative exponent property.

The following example demonstrates why this property is true.
$2^{3} \div 2^{-7}=2327=2 \cdot 2 \cdot 22 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
$=12 \cdot 2 \cdot 2 \cdot 2($ by cancellation of factors $)$
$=12-4$ or 2^{-4}
$2^{3} \cdot 2^{-7}=2^{3+(-7)}=2^{-4}=12-4$
In addition:
$12-4=1 \div 124=1 \cdot 241=2^{4}$, so it is also true that $2^{4}=12-4$.

You can simplify and evaluate expressions involving negative exponents using the same rules that you use for positive exponents, fractional exponents, and the zero exponent. Consider these examples:
$9^{-3} \div 9^{5}=9^{(-3+5)}=9^{2}$
$\left(4^{-6}\right)^{2}=4^{(6 \cdot-2)}=4^{-12}$
$\left(2^{-6} \cdot x^{3}\right)^{-5}=2^{(-6) \cdot(-5)} \cdot x^{3 \cdot(-5)}=2^{30} \cdot x^{-15}=230 \times 15$
$(9-54)-2=(9(-5) \cdot(-2) 41 \cdot(-2))=9104-2=910 \cdot 42$
A negative base raised to a positive power x is equal to the negative number multiplied by itself x times. A base raised to a negative exponentis equal to 1 divided by that base raised to a positive exponent. For example, compare (-4) 5 and 4^{-5} :
$(-4)^{5}=(-4) \cdot(-4) \cdot(-4) \cdot(-4) \cdot(-4)=-1,024$
$4-5=145=11,024$

The Zero Exponent

Any real, nonzero base raised to the power of zero has the value 1 . Thus, in general, $b^{0}=1$, where $b \neq 0$.

For example, consider the expression $4^{6} \div 4^{6}$. Using subtraction of exponents, the simplification is $4646=40$.
$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 44 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=1$
Representing the numerator and the denominator in expanded form and canceling factors gives the answer 1. It follows that $4^{0}=1$.

Scientific Notation

Scientific notation is a way of compactly representing very large and very small numbers. A number written in scientific notation is written as a number between 1 and 10 multiplied by a power of 10 .
$a \times 10^{n}$ where $1 \leq a<10$ and n is an integer
Here are some examples:
$0.024=2.4100=2.4102=2.4 \cdot 1102=2.4 \cdot 10-2$
$12,560,800=1.2560800 \cdot 10,000,000=1.25608 \cdot 10^{7}$

